Sebuah turbin yang bekerja terbalik disebut kompresor atau pompa turbo. Turbin gas, uap dan air biasanya memiliki "casing" sekitar baling-baling yang memfokus dan mengontrol fluid. "Casing" dan baling-baling mungkin memiliki geometri variabel yang dapat membuat operasi efisien untuk beberapa kondisi aliran fluida. Energi diperoleh dalam bentuk tenaga "shaft" berputar.
Penggunaan turbin
Penggunaan paling umum dari turbin adalah pemroduksian tenaga listrik. Hampir seluruh tenaga listrik diproduksi menggunakan turbin dari jenis tertentu. Turbin kadangkala merupakan bagian dari mesin yang lebih besar. Sebuah turbin gas, sebagai contoh, dapat menunjuk ke mesin pembakaran dalam yang berisi sebuah turbin, kompresor, "kombustor", dan alternator.
Turbin dapat memiliki kepadatan tenaga ("power density") yang luar biasa (berbanding dengan volume dan beratnya). Ini karena kemampuan mereka beroperasi pada kecepatan sangat tinggi. Mesin utama dari Space Shuttle menggunakan turbopumps (mesin yang terdiri dari sebuah pompa yang didorong oleh sebuah mesin turbin) untuk memberikan propellant (oksigen cair dan hidrogen cair) ke ruang pembakaran mesin. Turbopump hidrogen cair ini sedikit lebih besar dari mesin mobil dan memproduksi 70.000 hp (52,2 MW). Turbin juga merupakan komponen utama mesin jet.
Turbin gas
Mesin ini memiliki kompresor radial tahapan-tunggal dan turbin, recuperator, dan foil bearings. Turbin gas adalah sebuah mesin berputar yang mengambil energi dari arus gas pembakaran. Dia memiliki kompresor naik ke-atas dipasangkan dengan turbin turun ke-bawah, dan sebuah bilik pembakaran di-tengahnya. Energi ditambahkan di arus gas di pembakar, di mana udara dicampur dengan bahan bakar dan dinyalakan. Pembakaran meningkatkan suhu, kecepatan dan volume dari aliran gas. Kemudian diarahkan melalui sebuah penyebar (nozzle) melalui baling-baling turbin, memutar turbin dan mentenagai kompresor. Energi diambil dari bentuk tenaga shaft, udara terkompresi dan dorongan, dalam segala kombinasi, dan digunakan untuk mentenagai pesawat terbang, kereta, kapal, generator, dan bahkan tank.
Sejarah
* 150: Hero's Engine (aeolipile) - tampaknya Pahlawan mesin uap itu dianggap tidak lebih dari satu mainan, dan dengan demikian potensi penuh tidak menyadari selama berabad-abad.
* 1500: The "Chimney Jack" digambar oleh Leonardo da Vinci yang memutar pemanggangan. Udara panas dari api naik melalui serangkaian penggemar yang menghubungkan dan memutar pemanggangan.
* 1551: Jawad al-Din menemukan sebuah uap turbin, yang ia gunakan untuk kekuasaan diri-rotating meludah. [1]
* 1629: Jets uap turbin yang dirotasi kemudian diputar digerakkan mesin pabrik stamping memungkinkan untuk dikembangkan oleh Giovanni Branca.
* 1678: Ferdinand Verbiest membangun sebuah model kereta uap mengandalkan jet kekuasaan.
* 1791: Sebuah paten diberikan kepada John Barber, seorang Inggris, untuk pertama turbin gas sejati. Penemuannya itu sebagian besar elemen hadir dalam turbin gas modern. Turbin ini dirancang untuk menyalakan sebuah yg tdk mempunyai kuda kereta.
* 1872: Sebuah turbin gas mesin ini dirancang oleh Dr Franz Stolze, tapi mesin tidak pernah berlari di bawah kekuasaan sendiri.
* 1894: Sir Charles Parsons dipatenkan ide mendorong sebuah kapal dengan turbin uap, dan membangun sebuah demonstrasi kapal (yang Turbinia ). Prinsip ini masih propulsi dari beberapa digunakan.
* 1895: Tiga 4-ton 100 kW Parsons aliran radial generator dipasang di Cambridge Power Station, dan digunakan untuk daya listrik pertama skema penerangan jalan di kota.
* 1903: A Norwegia, Ægidius Elling, mampu membangun turbin gas pertama yang mampu menghasilkan kekuatan yang lebih dibandingkan yang dibutuhkan untuk menjalankan komponen-nya sendiri, yang dianggap sebagai pencapaian pada masa ketika pengetahuan tentang aerodinamis terbatas . Menggunakan kompresor rotary dan turbin itu dihasilkan 11 hp (besar-besaran untuk hari-hari). Karyanya ini kemudian digunakan oleh Sir Frank Whittle.
* 1913: Nikola Tesla paten yang Tesla turbin berdasar pada Batas lapisan efek.
* 1914: Aplikasi untuk mesin turbin gas yang diajukan oleh Charles Curtis.
* 1918: Salah satu produsen turbin gas terkemuka hari ini, General Electric, mulai divisi mereka turbin gas.
* 1920: teori praktis aliran gas melalui saluran ini dikembangkan menjadi lebih formal (dan berlaku untuk turbin) teori aliran gas lalu airfoils oleh Dr A. A. Griffith.
* 1930: Sir Frank Whittle dipatenkan desain untuk turbin gas untuk jet. Karyanya pada tenaga penggerak gas mengandalkan kerja dari semua orang yang sebelumnya bekerja di bidang yang sama dan dia telah sendiri menyatakan bahwa penemuannya akan sulit untuk mencapai tanpa Ægidius Elling karya. Pertama yang berhasil menggunakan mesin-nya pada April 1937.
* 1934: Raúl Pateras de Pescara dipatenkan pada free-piston mesin sebagai gas generator turbin gas.
* 1936: Hans von Ohain dan Max Hahn di Jerman mengembangkan desain mesin dipatenkan sendiri pada saat yang sama bahwa Sir Frank Whittle adalah mengembangkan desain di Inggris.
Teori operasi
Turbin gas dijelaskan secata termodinamika oleh Siklus Brayton, di mana udara dikompresi isentropic sekutu, pembakaran terjadi pada tekanan konstan, dan ekspansi terjadi di turbin isentropically kembali untuk tekanan awal.Dalam prakteknya, gesekan dan turbulensi menyebabkan:
1. Isentropic non-kompresi: untuk suatu tekanan secara keseluruhan rasio, suhu pengiriman kompresor lebih tinggi dari ideal.
2. Non-isentropic ekspansi: walaupun penurunan suhu turbin yang diperlukan untuk menggerakkan kompresor tidak terpengaruh, tekanan terkait rasio lebih besar, yang mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.
3. Tekanan kerugian dalam asupan udara, combustor dan knalpot: mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.
Brayton siklus
Seperti semua siklus mesin panas s, suhu pembakaran yang lebih tinggi berarti lebih besar efisiensi. Faktor pembatas adalah kemampuan baja, nikel, keramik, atau materi lain yang membentuk mesin untuk menahan panas dan tekanan. Teknik cukup masuk ke bagian turbin menjaga dingin. Kebanyakan turbin juga mencoba untuk memulihkan knalpot panas, yang sebaliknya adalah energi terbuang. Recuperator s adalah heat exchanger s yang lulus knalpot panas ke udara terkompresi, sebelum pembakaran. Gabungan siklus desain lulus limbah panas ke uap turbin sistem. Dan gabungan panas dan kekuasaan (co-generation) menggunakan limbah panas untuk produksi air panas.
Mekanis, turbin gas dapat kurang kompleks daripada pembakaran piston mesin. Sederhana turbin mungkin memiliki satu bergerak bagian: poros / kompresor / turbin / alternatif rotor perakitan (lihat gambar di atas), belum termasuk sistem bahan bakar. Namun, manufaktur presisi yang diperlukan untuk komponen dan paduan tahan temperatur yang diperlukan untuk efisiensi yang tinggi sering membuat pembangunan turbin sederhana lebih rumit daripada mesin piston. Lebih canggih turbin (seperti yang ditemukan di zaman modern mesin jet) dapat memiliki beberapa shaft (kelos), ratusan turbin baling, bergerak stator blades, dan sistem yang luas kompleks pipa, combustors dan penukar panas.
Sebagai aturan umum, semakin kecil mesin semakin tinggi tingkat perputaran poros (s) yang diperlukan untuk mempertahankan kecepatan tertinggi. Kecepatan sudu turbin menentukan tekanan maksimum yang dapat diperoleh, hal ini menghasilkan daya maksimum yang mungkin tergantung pada ukuran mesin. Mesin jet s beroperasi sekitar 10.000 rpm dan mikro turbin s sekitar 100.000 rpm. Thrust bantalan s dan jurnal bantalan adalah bagian penting dari desain. Secara tradisional, mereka telah hidrodinamik minyak bantalan, atau minyak-cooled bola bantalan s. Bantalan ini sedang dikalahkan oleh foil bantalan s, yang telah berhasil digunakan dalam turbin mikro dan unit daya tambahan s.
Kincir angin
Kincir angin adalah sebuah mesin yang digerakkan oleh tenaga angin untuk menumbuk biji-bijian. Kincir angin juga digunakan untuk memompa air untuk mengairi sawah. Kincir angin modern adalah mesin yang digunakan untuk menghasilkan energi listrik, disebut juga dengan turbin angin. Turbin angin kebanyakan ditemukan di Eropa dan Amerika Utara.
Turbin air
Turbin air adalah sebuah mesin berputar yang mengambil energi dari gerakan air. Turbin air dikembangkan pada awalh abad ke-19 dan digunakan secara luas untuk tenaga industri sebelum adanya jaringan listrik. Sekarang mereka digunakan untuk pembangkit tenaga listrik. Mereka mengambil sumber energi yang bersih dan terbaharui. Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk tenaga industri untuk jaringan listrik. Sekarang lebih umum dipakai untuk generator listrik. Turbin kini dimanfaatkan secara luas dan merupakan sumber energi yang dapat diperbaharukan.
Kincir air sudah sejak lama digunakan untuk tenaga industri. Pada mulanya yang dipertimbangkan adalah ukuran kincirnya, yang membatasi debit dan head yang dapat dimanfaatkan. Perkembangan kincir air menjadi turbin modern membutuhkan jangka waktu yang cukup lama. Perkembangan yang dilakukan dalam waktu revolusi industri menggunakan metode dan prinsip ilmiah. Mereka juga mengembangkan teknologi material dan metode produksi baru pada saat itu.
Kata "turbine" ditemukan oleh seorang insinyur Perancis yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa Latin dari kata "whirling" (putaran) atau "vortex" (pusaran air). Perbedaan dasar antara turbin air awal dengan kincir air adalah komponen putaran air yang memberikan energi pada poros yang berputar. Komponen tambahan ini memungkinkan turbin dapat memberikan daya yang lebih besar dengan komponen yang lebih kecil. Turbin dapat memanfaatkan air dengan putaran lebih cepat dan dapat memanfaatkan head yang lebih tinggi. (Untuk selanjutnya dikembangkan turbin impulse yang tidak membutuhkan putaran air).
Runtutan Sejarah
Sebuah sudu turbin Francis yang menghasilkan daya hampir 1 juta hp. Sedang dipasang pada bendungan Grand Coulee. Sebuah sudu tipe baling-baling yang menghasilkan daya 28 ribu hp.Ján Andrej Segner mengembangkan turbin air reaksi pada pertengahan tahun 1700. turbin ini mempunyai sumbu horizontal dan merupakan awal mula dari turbin air modern. Turbin ini merupakan mesin yang simpel yang masih diproduksi saat ini untuk pembangkit tenaga listrik skala kecil. Segner bekerja dengan Euler dalam membuat teori matematis awal untuk desain turbin.
Pada tahun 1820, Jean-Victor Poncelet mengembangkan turbin aliran kedalam.Pada tahun 1826, Benoit Fourneyon mengembangkan turbin aliran keluar. Turbin ini sangan efisien (~80%) yang mengalirkan air melalui saluran dengan sudu lengkung satu dimensi. Saluran keluaran juga mempunyai lengkungan pengarah.
Pada tahun 1844, Uriah A. Boyden mengembangkan turbin aliran keluar yang meningkatkan performa dari turbin Fourneyon. Bentuk sudunya mirip dengan turbin Francis.
Pada tahun 1849, James B. Francis meningkatkan efisiensi turbin reaksi aliran kedalam hingga lebih dari 90%. Dia memberikan test yang memuaskan dan mengembangkan metode engineering untuk desain turbin air. Turbin Francis dinamakan sesuai dengan namanya, yang merupakan turbin air modern pertama. Turbin ini masih digunakan secara luas di dunia saat ini.
Turbin air aliran kedalam mempunyai susunan mekanis yang lebih baik dan semua turbin reaksi modern menggunakan desain ini. Putaran massa air berputar hingga putaran yang semakin cepat, air berusaha menambah kecepatan untuk membangkitkan energi. Energi tadi dibangkitkan pada sudu dengan memanfaatkan berat jatuh air dan pusarannya. Tekanan air berkurang sampai nol sampai air keluar melalui sirip turbin dan memberikan energi.
Sekitar tahun 1890, bantalan fluida modern ditemukan, sekarang umumnya digunakan untuk mendukung pusaran turbin air yang berat. Hingga tahun 2002, bantalan fluida terlihat mempunyai arti selama lebih dari 1300 tahun
Sekitar tahun 1913, Victor Kaplan membuat turbin Kaplan, sebuah tipe mesin baling-baling. Ini merupakan evolusi dari turbin Francis tetapi dikembangkan dengan kemampuan sumber air yang mempunyai head kecil.
Konsep Baru Turbin
Pada umumnya semua turbin air hingga akhir abad 19 (termasuk kincir air) merupakan mesin reaksi; tekanan air yang berperan pada mesin dan menghasilkan kerja. Sebuah turbin reaksi membutuhkan air yang penuh dalam proses transfer energi.
Pada tahun 1866, tukang pembuat gilingan di California, Samuel Knight menemukan sebuah mesin yang mengerjakan tuntas sebuah konsep yang berbeda jauh. Terinspirasi dari system jet tekanan tinggi yang digunakan dalam lapangan pengeboran emas hidrolik, Knight mengembangkan ceruk kincir yang dapat menangkap energi dari semburan jet, yang ditimbulkan dari energi kinetik air pada sumber yang cukup tinggi (ratusan kaki) yang dialirkan melalui sebuah pipa saluran. Turbin ini disebut turbin impulse atau turbin tangensial. Aliran air mendorong ceruk disekeliling kincir turbin pada kecepatan maksimum dan jatuh keluar sudu dengan tanpa kecepatan.
Pada tahun 1879, Lester Pelton, melakukan percobaan dengan kincir Knight, dikembangkanlah desain ceruk ganda yang membuang air kesamping, menghilangkan beberapa energi yang hilang pada kincir Knight yang membuang sebagian air kembali melawan kincir. Sekitar tahun 1895, William Doble mengembangkan ceruk setengah silinder milik Pelton menjadi ceruk berbentuk bulat memanjang, termasuk sebuah potongan didalamnya yang memungkinkan semburan untuk membersihkan masukan ceruk. Turbin ini merupakan bentuk modern dari turbin Pelton yang saat ini dapat memberikan efisiensi hingga 92%. Pelton telah memprakarsai desain yang efektif, kemudian Doble mengambil alih perusahaan Pelton dan tidak mengganti namanya menjadi Doble karena nama Pelton sudah dikenal. Turgo dan turbin aliran silang merupakan desain turbin impulse selanjutnya.
Teori Pengoperasian
Aliran air diarahkan langsung menuju sudu-sudu melalui pengarah, menghasilkan daya pada sirip. Selama sudu berputar, gaya bekerja melalui suatu jarak, sehingga menghasilkan kerja. Dalam proses ini, energi ditransfer dari aliran air ke turbin. Turbin air dibedakan menjadi dua kelompok, yaitu turbin reaksi dan turbin impuls. Kepresisian bentuk turbin air, apapun desainnya, semua digerakkan oleh suplai tekanan air.
Turbin Reaksi
Turbin reaksi digerakkan dengan air, yang merubah tekanan sehingga melewati turbin dan menaikkan energi. Turbin reaksi harus menutup untuk mengisi tekanan air (pengisap) atau mereka harus sepenuhnya terendam dalam aliran air. Hukum ketiga Newton menggambarkan transfer energi untuk turbin reaksi Turbin air yang paling banyak digunakan adalah turbin reaksi. Turbin reaksi digunakan untuk aplikasi turbin dengan head rendah dan medium.
Turbin Impuls
Turbin impuls merubah aliran semburan air. Semburan turbin membentuk sudut yang membuat aliran turbin. Hasil perubahan momentum (impuls) disebabkan tekanan pada sudu turbin. Sejak turbin berputar, gaya berputar melalui kerja dan mengalihkan aliran air dengan mengurangi energi. Sebelum mengenai sudu turbin, tekanan air (energi potensial) dikonversi menjadi energi kinetik oleh sebuah nosel dan difokuskan pada turbin. Tidak ada tekanan yang dirubah pada sudu turbin, dan turbin tidak memerlukan rumahan untuk operasinya. Hukum kedua Newton menggambarkan transfer energi untuk turbin impuls. Turbin impuls paling sering digunakan pada aplikasi turbin tekanan sangat tinggi.
Daya
Tenaga yang didapat dari aliran air adalah,
P = η . ρ . g . h . i
Dimana:
· P = Daya (J/s or watts)
· η = efisiensi turbin
· ρ = massa jenis air (kg/m3)
· g = percepatan gravitasi (9.81 m/s2)
· h = head (m). Untuk air tenang, ada perbedaan berat antara permukaan masuk dan keluar. Perpindahan air memerlukan komponen tambahan untuk ditambahkan untuk mendapatkan aliran energi kinetik. Total head dikalikan tekanan head ditambah kecepatan head.
· i = aliran rata-rata (m3/s)
Pompa Penyimpanan
Beberapa turbin air didesain untuk pompa penyimpan hidroelektrik. Pompa ini dapat mengalirkan dan mengoperasikan pompa untuk memenuhi reservoir tinggi selama listrik tidak beroperasi dan kemudian kembali ke turbin untuk membangkitkan daya selama permintaan listrik tidak beroperasi. Turbin tipe ini biasanya berupa desain turbin Deriaz atau Francis.
Efisiensi
Turbin air modern dioperasikan pada efisiensi mekanis lebih dari 90% (tidak terpengaruh efisiensi termodinamika).
Jenis-Jenis Turbin Air
Turbin reaksi
· Francis
· Kaplan, Propeller, Bulb, Tube, Straflo
· Tyson
· Kincir air
Turbin Impuls
· Pelton
· Turgo
· Michell-Banki (juga dikenal sebagai turbin crossflow atau ossberger).
Desain dan Aplikasi
Pemilihan turbin kebanyakan didasarkan pada head air yang didapatkan dan kurang lebih pada rata-rata alirannya. Umumnya, turbin impuls digunakan untuk tempat dengan head tinggi, dan turbin reaksi digunakan untuk tempat dengan head rendah. Turbin Kaplan baik digunakan untuk semua jenis debit dan head, efisiiensinya baik dalam segala kondisi aliran.
Turbin kecil (umumnya dibawah 10 MW) mempunyai poros horisontal, dan kadang dipakai juga pada kapasitas turbin mencapai 100 MW. Turbin Francis dan Kaplan besar biasanya mempunyai poros / sudu vertikal karena ini menjadi penggunaan paling baik untuk head yang didapatkan, dan membuat instalasi generator lebih ekonomis. Poros Pelton bisa vertikal maupun horisontal karena ukuran turbin lebih kecil dari head yang di dapat atau tersedia. Beberapa turbin impuls menggunakan beberapa semburan air tiap semburan untuk meningkatkan kecepatan spesifik dan keseimbangan gaya poros.
Tipe Penggunaan Head
· Kaplan 2
Kecepatan spesifik (ns), menunjukkan bentuk dari turbin itu dan tidak berhubungan dengan ukurannya. Hal ini menyebabkan desain turbin baru yang diubah skalanya dari desain yang sudah ada dengan performa yang sudah diketahui. Kecepatan spesifik merupakan kriteria utama yang menunjukkan pemilihan jenis turbin yang tepat berdasarkan karakteristik sumber air.
Kecepatan spesifik dari sebuah turbin juga dapat diartikan sebagai kecepatan ideal, persamaan geometris turbin, yang menghasilkan satu satuan daya tiap satu satuan head.
Kecepatan spesifik tubin diberikan oleh perusahaan (dengan penilaian yang lainnya) dan dan selalu dapat diartikan sebagai titik efisiensi maksimum. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu.
Kecepatan Spesifik
, n = rpm
, Ω = kecepatan sudut (radian/detik)
Gambar diadaptasi dari European Community's Layman's Guidebook (on how to develop a small hydro site)
Contoh: Diketahui debit dan head dari sebuah sumber air dan rpm kebutuhan dari generator. Hitunglah kecepatan spesifiknya. Hasilnya merupakan kriteria utama dalam pemilihan turbin. Kecepatan spesifik juga merupakan titik awal dari analisis desain dari sebuah turbin baru. Sekali kecepatan spesifik yang diinginkan diketahui, dimensi dasar dari bagian-bagian turbin dapat dihitung dengan mudah.
Hukum Affinity mengijinkan keluaran turbin dapat diperkirakan berdasarkan dari test permodelan. Replika miniatur dari desain yang diusulkan, diameter sekitar satu kaki (0,3 m), dapat diuji dan hasil pengukuran laboratorium dapat digunakan sebagai kesimpulan dengan tingkat keakuratan yang tinggi. Hukum Affinity didapatkan dari penurunan yang membutuhkan persamaan antara test permodelan dan penggunaanya. Debit yang melalui turbin dikendalikan dengan katub yang besar atau pintu gerbang yang disusun diluar sekeliling pengarah turbin. Perubahan head dan debit dapat dilakukan dengan variasi bukaan pintu, akan menghasilkan diagram yang menunjukkan efisiensi turbin dengan kondisi yang berubah-ubah.
Putaran Liar
Putaran liar turbin air adalah kecepatan saat debit maksimum dengan tanpa beban poros. Turbin didesain untuk bertahan dari gaya mekanis dengan kecepatan ini. Perusahaan akan memberikan putaran liar yang diijinkan.
Pemeliharaan Turbin
Sebuah turbin Francis dalam masa akhir penggunaanya, menunjukkan lubang kavitasi, retakan kelelahan dan kerusakan besar. Dapat dilihat bekas perbaikan sebelumnya dengan las stainless steel. Turbin didesain untuk bekerja dalam jangka waktu puluhan tahun dengan sangat sedikit pemeliharaan pada elemen utamanya, interval pemeriksaan total dilakukan dalam jangka waktu beberapa tahun. Pemeliharaan pada sudu, pengarah dan part lain yang bersentuhan dengan air termasuk pembersihan, pemeriksaan dan perbaikan part yang rusak.
Keausan umumnya adalah lubang akibat kavitasi, retakan kelelahan dan pengikisan dari benda padat yang tercampur dalam air. Elemen baja diperbaiki dengan pengelasan, umumnya dengan las stainless steel. Area yang berbahaya dipotong atau digerinda, kemudian dilas sesuai dengan bentuk aslinya atau dengan profil yang diperkuat. Sudu turbin tua mungkin akan mempunyai banyak tambahan stainless steel hingga akhir penggunaannya. Prosedur pengelasan yang rumit mungkin digunakan untuk mendapatkan kualitas perbaikan terbaik.
Elemen lainnya yang membutuhkan pemeriksaan dan perbaikan selama pemeriksaan total termasuk bantalan, kotak paking dan poros, motor servo, sistem pendingin untuk bantalan dan lilitan generator, cincin seal, elemen sambungan gerbang dan semua permukaan.
Dampak Atau Pengaruh Pada Lingkungan
Turbin air mempunyai pengaruh positif dan negatif bagi lingkungan. Turbin adalah salah satu penghasil tenaga terbersih, menggantikan pembakaran bahan bakar fosil dan menghapuskan limbah nuklir. Turbin menggunakan energi terbarukan dan dedesain untuk beroperasi dalam jangka waktu puluhan tahun. Turbin memproduksi sumber energi listrik dunia dengan jumlah yang besar.
Dalam sejarah turbin juga mempunyai konsekuensi negatif. Putaran sudu atau gerbang pengarah dari turbin air dapat mengganggu ekologi natural sungai, membunuh ikan, menghentikan migrasi dan menggangu mata pencaharian manusia. Contohnya, suku Indian Amerika di Pasific Northwest mempunyai mata pencaharian memancing ikan salmon, tapi pembangunan dam secara agresif menghancurkan jalan hidupnya. Hingga akhir abad 20, dapat dimungkinkan untuk membangun sistem pembangkit tenaga air yang mengalihkan ikan dan organisme lainnya dari saluran masuk turbin tanpa kerusakan atau kehilangan tenaga yang berarti. Sistem akan memerlukan sedikit pembersihan tetapi secara pada dasarnya lebih mahal untuk dibangun. Di Amerika Serikat sekarang menahan migrasi ikan adalah ilegal, sehingga tangga ikan harus disediakan oleh pembangun bendungan.
http://74.125.153.132/search?q=cache:B_NQVkd6FxIJ:agungchynta.files.wordpress.com/2007/03/turbin-air.ppt+turbin&cd=3&hl=id&ct=clnk&gl=id
http://id.wikipedia.org/wiki/Turbin
http://id.wikipedia.org/wiki/Turbin_gas
http://id.wikipedia.org/wiki/Kincir_anginhttp://id.wikipedia.org/wiki/Turbin_air